

Description

Current Limiting Module (CLM) is a chip type surface mountable device that can protect against both overcurrent and overcharging. It comprises a fuse element to ensure stable operation under normal electrical current and to cut off the current when overcurrent occurs. It also comprises a resistive heating element that could be used in combination with a voltage detecting means, such as IC and FET. When overvoltage is detected, the heating element is electrically excited to generate heat to blow the fuse element to achieve overvoltage protection.

Features

- · Halogen-free
- Overcharging protection
- Overcurrent protection

Application

- Notebook
- · Cell phone
- Camera
- Ultrabook

- Tablet PC
- Automotive applications

• Surface mountable

· Fast response time

- Printer
- Security systems

Agency Approval and Environmental Compliance

Agency	File Number	Regulation	Standard
c FL °us	E331807	See Halogen Free	IEC 61249-2-21:2003
TÚVRIdinand CERTIFIED	TA 50428400	RoHS	2011/65/EU

Electrical Specifications

Devit Neurole en	Irated	Cells in	V _{max}	Ibreak	Vop	Resist	ance	Age Appi	2
Part Number	(A)	series	(V _{DC})	oc) (A)	(V)	R _{heater} (Ω)	R _{fuse} (mΩ)	c '911 'us	TÜVRheinland
CLM1612P0422F	22	1	36	50	3.5 ~ 4.7	0.55 ~ 1.30	0.5 ~ 2.5	~	\checkmark
CLM1612P0822F	22	2	36	50	6.0 ~ 9.2	2.10 ~ 3.80	0.5 ~ 2.5	~	\checkmark
CLM1612P1222F	22	3	36	50	9.0 ~ 13.8	4.80 ~ 8.60	0.5 ~ 2.5	~	\checkmark
CLM1612P1422F	22	4	36	50	12.0 ~ 18.5	8.60 ~ 15.20	0.5 ~ 2.5	~	\checkmark
CLM1612P2022F	22	5	36	50	15.9 ~ 23.1	13.50 ~ 26.70	0.5 ~ 2.5	~	\checkmark

Electrical Characteristics

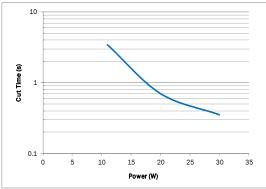
Current Capacity	100% x I _{rated} No Melting
Cut Time	200% x I _{rated} < 1 min
Interrupting Current	5 x I _{rated} , power on 5 ms, power off 995 ms, 10000 cycles No Melting
Over Voltage Operation	In operation voltage range, the fusing time is <1min.

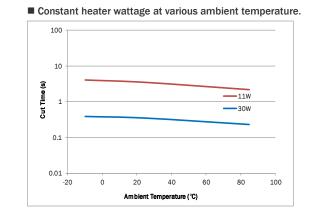
Note on Electrical Specifications & Characteristics

Vocabulary

- I_{rated} = Current carrying capacity that is measured at 40°C thermal equilibrium condition.
- Ibreak = The current that the fuse element is able to interrupt.
- V_{max} = The maximum voltage that can be cut off by fuse.
- V_{op} = Range of operation voltage.
- **R**_{heater} = The resistance of the heating element.
- **R**_{fuse} = The resistance of the fuse element.
- Cells in series = Number of battery cells connected in series in the circuit for CLM device to protect.
- Value specified is determined by using the PWB with 6mm*2oz copper traces, AWG14 covered wire, and 0.6mm glass epoxy PCB.
- Specifications are subject to change without notice.

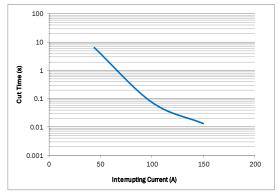
- General
 - Before and after mounted, the ultrasonic-cleaning or immersion-cleaning must not be done to CLM device. The flux on element would flow, and it would not be satisfied its specification when cleaning is done. In addition, a similar influence happens when the product comes in contact with cleaning-solution. These products after cleaning will not be guaranteed.
 - Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of CLM devices, and shall not be used or applied.
 - Please Do Not reuse the CLM device removed by the soldering process.
 - CLM devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by, among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.
 - Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the CLM devices.
 - The performance of CLM devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.
 - Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection to avoid or minimize damage that may result from extra-ordinary, irregular function or failure of CLM devices.
 - There should be minimum of 0.1mm spacing between CLM and surrounding compounds, to maintain the product characteristics and avoid damage other surrounding compounds.
 - This product is designed and manufactured only for general-use of electronics devices. We do not recommend that it is used for the applications Military, Medical and so on which may cause direct damages on life, bodies or properties.

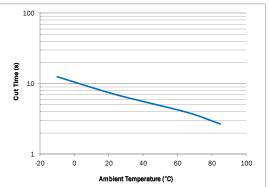



Thermal Derating Characteristics

Ambient Temperature (°C)	25	40	60
Recommend Rated Current (A)	25.0	22.0	18.0

Cut Time by Heater Operation


■ Various heater wattage at 25°C ambient temperature.



Cut Time by Current Operation

■ Various interrupting current at 25°C ambient temperature.

Constant 2x rated current at various ambient temperature.

Environmental Specifications

0~35°C,≦70%RH Shelf life: 1 year

-10°C to +65 °C

100±5°C, 250 hours

-20±3°C, 500 hours

Board and Solder Layout Recommend (mm)

Glass Epoxy PCB

0.6mm

В3

+

Β4 Ŧ B5 No structural damage and functional failure

No structural damage and functional failure

No structural damage and functional failure

60°C±2°C, 90~95%R.H. 250 hours

Storage Temperature

Operating Temperature

Hot Passive Aging

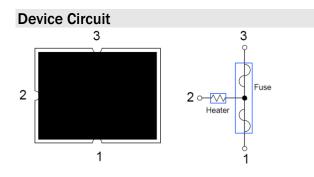
Humidity Aging

Cold Passive Aging

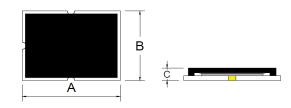
B1

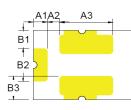
+

B2


A1

A2


A3


Material

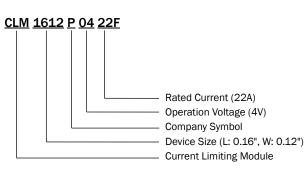
Base Thickness

Physical Dimensions (mm.)

4.00 ± 0.2
3.00 ± 0.3
0.90 max
0.58 ± 0.1
0.50 ± 0.1
2.20 ± 0.1

B1	0.80 ± 0.1
B2	1.44 ± 0.1
B3	1.03 ± 0.1

		_
0.80 ± 0.1	_	
1.44 ± 0.1		
1.03 ± 0.1		

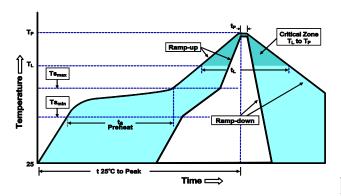

	Copper Thi	Copper Thickness Covered Wire		0.07mm
	Covered			AWG14
1				
1	A1	1.20	± 0.1	
L .	A2	1.55	± 0.1	

 2.40 ± 0.1

A3

_		
	B1	1.20 ± 0.1
	B2	1.60 ± 0.1
	B3	1.55 ± 0.1
	B4	0.90 ± 0.1
	B5	1.55 ± 0.1

Part Number System


Part Marking System

Soldering Parameters

Average Ramp-Up Rate (Ts _{max} to T_P)	3°C/second max.
Preheat	
-Temperature Min (Tsmin)	150°C
-Temperature Max (Ts _{max})	200°C
-Time (Ts _{min} to Ts _{max})	60-120 seconds
Time maintained above:	
-Temperature (TL)	217°C
-Time (t∟)	60-105 seconds
Peak Temperature (T _P)	255°C
Time within 5°C of actual Peak	
Temperature (t _P)	5 seconds max.
Ramp-Down Rate	6°C /second max.
Time 25°C to Peak Temperature	8 minutes max.

ш ¢ \bigcirc C \bigcirc \bigcirc \cap \bigcirc Q A٥ W 12.0 ± 0.30 F 5.50 ± 0.05 Еı 1.75 ± 0.10 Ó \mathbf{D}_0 1.55 ± 0.05 D1 1.50 ± 0.10 **P**0 4.00 ± 0.10 P₁ 8.00 ± 0.10 P₂ 2.00 ± 0.10 3.32 ± 0.10 17.4 ± 1.0 \mathbf{A}_0 н \mathbf{B}_0 4.32 ± 0.10 W 13.4 ± 1.0 т 0.23 ± 0.05 D Ø99.0 ± 0.5 1.30 ± 0.10 С Ø330 ± 1.0 K₀

Packaging Quantity

Note 1: The temperature shown above is the top-side surface temperature of the device.
Note 2: If the soldering temperature profile deviates from the recommended profile,
devices may not meet the performance requirements

Part Number	Tape & Reel Quantity
CLM1612PXX22F	5000

Tape & Reel Specification (mm.)

