





#### Description

Current Limiting Module (CLM) is a chip type surface mountable device that can protect against both overcurrent and overcharging. It comprises a fuse element to ensure stable operation under normal electrical current and to cut off the current when overcurrent occurs. It also comprises a resistive heating element that could be used in combination with a voltage detecting means, such as IC and FET. When overvoltage is detected, the heating element is electrically excited to generate heat to blow the fuse element to achieve overvoltage protection.

#### Features

- Halogen-free
- Overcharging protection
- Overcurrent protection

### Application

- Notebook
- Cell phone
- Camera
- Ultrabook

- Tablet PC
- Automotive applications

• Surface mountable

· Fast response time

- Printer
- Security systems

### Agency Approval and Environmental Compliance




RoHS Directive: Compliance (This product complies with RoHS exemption requirements, since the high melting temperature solder and

electronic ceramic parts include Lead.)

## **Electrical Specifications**

| Deut Neuelleur | Irated Cells in | V <sub>max</sub> I | break              | Ibreak VOP | Resistance  |                            | Agency<br>Approval        |                 |              |
|----------------|-----------------|--------------------|--------------------|------------|-------------|----------------------------|---------------------------|-----------------|--------------|
| Part Number    | (A)             | series             | (V <sub>DC</sub> ) | (A)        | (V)         | R <sub>heater</sub><br>(Ω) | R <sub>fuse</sub><br>(mΩ) | c <b>FLL</b> us | TÜVRheinland |
| CLM1612P0415H  | 15              | 1                  | 36                 | 50         | 3.0 ~ 5.0   | 0.6 ~ 1.5                  | 1.0 ~ 3.0                 | ~               | $\checkmark$ |
| CLM1612P0815H  | 15              | 2                  | 36                 | 50         | 5.0 ~ 9.8   | 2.4 ~ 3.6                  | 1.0 ~ 3.0                 | ~               | $\checkmark$ |
| CLM1612P1215H  | 15              | 3                  | 36                 | 50         | 7.4 ~ 14.6  | 5.5 ~ 8.4                  | 1.0 ~ 3.0                 | ~               | $\checkmark$ |
| CLM1612P1415H  | 15              | 4                  | 36                 | 50         | 10.5 ~ 19.6 | 10.4 ~ 15.8                | 1.0 ~ 3.0                 | $\checkmark$    | $\checkmark$ |
| CLM1612P2015H  | 15              | 5                  | 36                 | 50         | 12.5 ~ 24.0 | 17.9 ~ 29.1                | 1.0 ~ 3.0                 | ✓               | ✓            |







#### **Electrical Characteristics**

| Current Capacity       | 100% x I <sub>rated</sub><br>No Melting                                              |
|------------------------|--------------------------------------------------------------------------------------|
| Cut Time               | 200% x I <sub>rated</sub><br>< 1 min                                                 |
| Interrupting Current   | 5 x I <sub>rated</sub> , power on 5 ms, power off 995 ms, 10000 cycles<br>No Melting |
| Over Voltage Operation | In operation voltage range, the fusing time is <1min.                                |

#### Note on Electrical Specifications & Characteristics

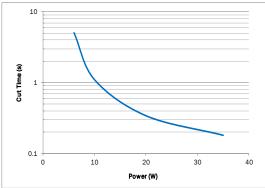
#### Vocabulary

- I<sub>rated</sub> = Current carrying capacity that is measured at 40°C thermal equilibrium condition.
- Ibreak = The current that the fuse element is able to interrupt.
- $V_{max}$  = The maximum voltage that can be cut off by fuse.
- V<sub>op</sub> = Range of operation voltage.
- **R**<sub>heater</sub> = The resistance of the heating element.
- **R**<sub>fuse</sub> = The resistance of the fuse element.
- Cells in series = Number of battery cells connected in series in the circuit for CLM device to protect.
- Value specified is determined by using the PWB with 2mm\*2oz copper traces, AWG14 covered wire, and 0.6mm glass epoxy PCB.
- Specifications are subject to change without notice.

## **AWARNING**

- General
  - Before and after mounted, the ultrasonic-cleaning or immersion-cleaning must not be done to CLM device. The flux on element would flow, and it would not be satisfied its specification when cleaning is done. In addition, a similar influence happens when the product comes in contact with cleaning-solution. These products after cleaning will not be guaranteed.
  - Silicone-based oils, oils, solvents, gels, electrolytes, fuels, acids, and the like will adversely affect the properties of CLM devices, and shall not be used or applied.
  - Please Do Not reuse the CLM device removed by the soldering process.
  - CLM devices are secondary protection devices and are used solely for sporadic, accidental over-current or over-temperature error condition, and shall NOT be used if or when constant or repeated fault conditions (such fault conditions may be caused by, among others, incorrect pin-connection of a connector) or over-extensive trip events may occur.
  - Operation over the maximum rating or other forms of improper use may cause failure, arcing, flame and/or other damage to the CLM devices.
  - The performance of CLM devices will be adversely affected if they are improperly used under electronic, thermal and/or mechanical procedures and/or conditions non-conformant to those recommended by manufacturer.
  - Customers shall be responsible for determining whether it is necessary to have back-up, failsafe and/or fool-proof protection to avoid or minimize damage that may result from extra-ordinary, irregular function or failure of CLM devices.
  - There should be minimum of 0.1mm spacing between CLM and surrounding compounds, to maintain the product characteristics and avoid damage other surrounding compounds.
  - This product is designed and manufactured only for general-use of electronics devices. We do not recommend that it is used for the applications Military, Medical and so on which may cause direct damages on life, bodies or properties.

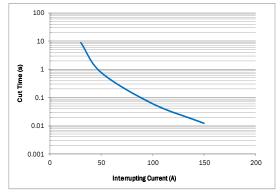




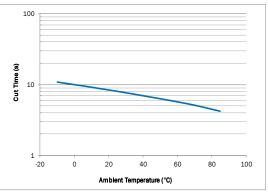

#### **Thermal Derating Characteristics**

| Ambient Temperature (°C)    | 25   | 40   | 60   |
|-----------------------------|------|------|------|
| Recommend Rated Current (A) | 18.0 | 16.0 | 13.5 |

### **Cut Time by Heater Operation**

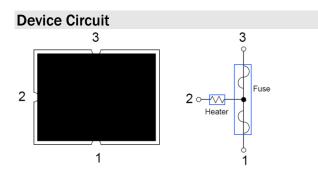

■ Various heater wattage at 25°C ambient temperature.



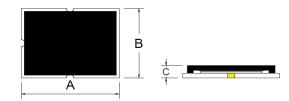

#### Constant heater wattage at various ambient temperature. 10 1 Cut Time (s) 6W 35W 0.1 0.01 0 40 100 -20 20 60 80 Ambient Temperature (°C)

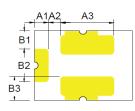
#### **Cut Time by Current Operation**

■ Various interrupting current at 25°C ambient temperature.




Constant 2x rated current at various ambient temperature.








### **Physical Dimensions (mm.)**



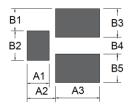


| А  | 4.00 ± 0.2     |
|----|----------------|
| В  | 3.00 ± 0.3     |
| С  | 0.90 max       |
| A1 | $0.58 \pm 0.1$ |
| A2 | $0.50 \pm 0.1$ |
| A3 | $2.20 \pm 0.1$ |

| B1 | $0.80 \pm 0.1$ |
|----|----------------|
| B2 | $1.44 \pm 0.1$ |
| B3 | $1.03 \pm 0.1$ |
|    |                |
|    |                |
|    |                |

|   |                | Co       |
|---|----------------|----------|
| L | 0.80 ± 0.1     |          |
| 2 | $1.44 \pm 0.1$ | A:       |
| 3 | $1.03 \pm 0.1$ | Α:<br>Δ: |
|   |                | A        |
|   |                |          |

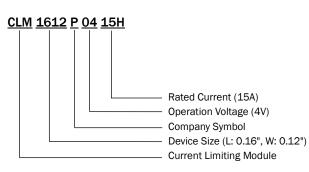
| oporating remperature | -10 C (0 +65 C  |
|-----------------------|-----------------|
| Operating Temperature | -10°C to +65 °C |


**Environmental Specifications** 

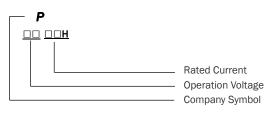
Storage Temperature

| Hat Dessive Aging  | 100±5°C, 250 hours                          |
|--------------------|---------------------------------------------|
| Hot Passive Aging  | No structural damage and functional failure |
| Humidity Aging     | 60°C±2°C, 90~95%R.H. 250 hours              |
| numiaity Aging     | No structural damage and functional failure |
| Cold Possive Aging | -20±3°C, 500 hours                          |
| Cold Passive Aging | No structural damage and functional failure |

0~35°C,≦70%RH Shelf life: 1 year


### Board and Solder Layout Recommend (mm)

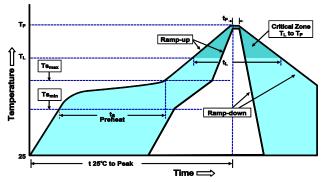



| Material         | Glass Epoxy PCB |
|------------------|-----------------|
| Base Thickness   | 0.6mm           |
| Copper Thickness | 0.07mm          |
| Covered Wire     | AWG14           |

| 0.1 |
|-----|
| 0.1 |
| 0.1 |
| 0.1 |
| 0.1 |
| 0.1 |

#### Part Number System




## Part Marking System







#### **Soldering Parameters**



| Average Ramp-Up Rate (Ts <sub>max</sub> to T <sub>P</sub> ) | 3°C/second max.  |
|-------------------------------------------------------------|------------------|
| Preheat                                                     |                  |
| -Temperature Min (Ts <sub>min</sub> )                       | 150°C            |
| -Temperature Max (Ts <sub>max</sub> )                       | 200°C            |
| -Time (Ts <sub>min</sub> to Ts <sub>max</sub> )             | 60-120 seconds   |
| Time maintained above:                                      |                  |
| -Temperature (TL)                                           | 217°C            |
| -Time (t <sub>L</sub> )                                     | 60-105 seconds   |
| Peak Temperature (T <sub>P</sub> )                          | 255°C            |
| Time within 5°C of actual Peak                              |                  |
| Temperature (t <sub>P</sub> )                               | 5 seconds max.   |
| Ramp-Down Rate                                              | 6°C /second max. |
| Time 25°C to Peak Temperature                               | 8 minutes max.   |

#### $\bigcirc$ С $\bigcirc$ $\bigcirc$ Q н w $12.0 \pm 0.30$ F $5.50 \pm 0.05$ E1 $1.75 \pm 0.10$ $\mathbf{D}_0$ $1.55 \pm 0.05$ D1 $1.50 \pm 0.10$ $\mathbf{P}_0$ $4.00 \pm 0.10$ P<sub>1</sub> $8.00 \pm 0.10$ IW $\mathbf{P}_2$ $2.00 \pm 0.10$ 17.4 ± 1.0 $\mathbf{A}_0$ $3.32 \pm 0.10$ Н $\mathbf{B}_0$ $4.32 \pm 0.10$ W $13.4 \pm 1.0$ т $0.23 \pm 0.05$ D Ø99.0 ± 0.5 $1.30 \pm 0.10$ С Ø330 ± 1.0 ${f K}_0$

### Packaging Quantity

| Note 1: The temperature shown above is the top-side surface temperature of the device. |
|----------------------------------------------------------------------------------------|
| Note 2: If the soldering temperature profile deviates from the recommended profile,    |
| devices may not meet the performance requirements                                      |

| Part Number   | Tape & Reel Quantity |
|---------------|----------------------|
| CLM1612PXX15H | 5000                 |

Tape & Reel Specification (mm.)

